

How to approach a Shoulder MRI

Kristen E. McClure, MD Lukas M. Trunz, MD

Routine Shoulder MRI Protocol

Seq.	FOV	Matrix/ Nex	Slice	TR	TE	TI	ETL	BW
Axial PD FSE FatSat	12-14	512 x 256 2	4/ 0.5	2000- 3000	20- 40		8	16
Cor Oblique FSTIR	16-18	256 x 192 2	4/ 0.5	> 1500	20- 40	3.0 T: 180 1.5 T: 150 0.7 T: 100 0.3 T: 70	8	16
Cor Oblique T1 SE NonFatSat	16-18	256 x 256 1	4/ 0.5	400- 800	minimum			16
Sag Oblique T2 FSE NonFatSat	14-16	256 x 192 1	4/1	> 2000	90- 110		8	16

MR Arthrogram of the Shoulder

Seq.	FOV	Matrix/ Nex	Slice	TR	TE	ETL	BW
Axial T1 SE FatSat	12-14	256 x 192 2	3/ 0.5	400-800	minimum		16
Cor Oblique T1 SE FatSat	14-16	256 x 192 2	3/ 0.5	400-800	minimum		16
Cor Oblique PD FSE FatSat	14-16	256 x 192 2	3/ 0.5	>1500	30-50	8	16
Sag Oblique T1 SE NonFatSat	14	256 x 192 1	4/1	400-800	minimum		16
ABER T1 SE FatSat	14	256 x 192 2	3/ 0.5	400-800	minimum		16

- 1. Evaluate for Impingement:
 - Check for a <u>subacromial spur</u> on the *Coronal T1 non-fat saturated* sequence
 - Check for an Os acromiale on the Coronal T1 non-fat saturated and the Axial Proton Density (PD) fat saturated sequences
 - Check for <u>AC joint osteoarthritis</u> on the *Coronal STIR, Axial PD fat saturated* and *Coronal T1* sequences.
- 1. Evaluate the acromioclavicular (AC) joint:
 - Check on the *Coronal STIR* for marrow edema, capsular edema/disruption, and ligamentous integrity or injury (including the coracoclavicular ligament)
 - Evaluate <u>alignment</u>

- 3. Subacromial/ Subdeltoid Bursa:
 - Using the *Coronal STIR* evaluate for bursitis, excess fluid or hydroxyapatite deposition
- 4. Rotator Cuff tendons:
 - Using the Coronal STIR to evaluate the <u>supraspinatus and</u> <u>infraspinatus tendons</u> (remember to check the anterior most footprint of the supraspinatus):
 - Check for <u>tendinosis</u>: tendon thickening, attenuation, and/or intrasubstance signal alteration, hydroxyapatite deposition
 - Check for partial thickness, interstitial, and full thickness tearing

- 4. Rotator Cuff tendons (continued):
 - Confirm the findings on Sagittal oblique T2 non fat saturated and Axial Proton Density fat saturated sequences → on these sequences you get a better look at the infraspinatus tendon in its entirety
 - <u>Measure tendon tears</u> in the AP dimension on the *Sagittal oblique T2* non fat saturated images
 - Measure tendon retractions on the Coronal T2 fat saturated sequence.
 - Evaluate the integrity of the <u>subscapularis and teres minor</u> tendons on the *Axial PD fat saturated* and the *Sagittal oblique T2 non fat saturated* sequences.

- 5. Long Head Biceps Tendon (LHBT):
 - Evaluate the <u>integrity</u> of the LHBT on the *Axial PD fat saturated* sequence and confirm it on the *Coronal STIR* sequence (the intraarticular portion can commonly be evaluated on the *Sagittal oblique T2 non fat saturated* sequence as well)
 - Evaluate the <u>location</u> of the LHBT at the level of the lesser tuberosity on the *Axial PD fat saturated* sequence
 - Evaluate for <u>subluxation/ dislocation</u> of the LHBT

6. Rotator Cuff Muscle Bulk:

Evaluate on the Sagittal oblique T2 non fat saturated sequence

 → fatty streaking/replacement can be confirmed on the Coronal
 T1 non fat saturated sequence

7. Rotator Interval:

 Evaluate if the fat within the rotator interval is preserved or infiltrated on the Coronal T1 non fat saturated sequence → Confirm with Sagittal oblique T2 non fat saturated and Coronal STIR sequence

8. Glenohumeral Joint:

- Evaluate for <u>alignment</u>
- Check the *Coronal STIR and Axial PD fat saturated* sequences for:
 - Presence of a joint effusion
 - Synovitis
 - > Intraarticular bodies
- Evaluate the <u>hyaline cartilage</u> for partial or full thickness defects on the *axial PD fat saturated* and *Coronal STIR* sequences

- 8. Glenohumeral Joint (continued):
 - Evaluate for <u>labral tears</u> on *Coronal STIR* and *Axial PD fat* saturated sequences. Evaluate for:
 - > abnormal morphology, intrasubstance signal alteration, displaced fragments, paralabral cysts, etc.
 - > extension of a labral tear into the LHBT, glenohumeral ligament, rotator interval
 - Evaluate the <u>inferior glenohumeral</u> ligament for injury, thickening, or periligamentous edema on the *Coronal STIR* sequence

9. Notches:

 Evaluate for mass/ mass effect in the suprascapular and spinoglenoid notch, and within the quadrilateral space on the Coronal STIR and Sagittal oblique T2 non fat saturated sequences

10. Bone Marrow:

 Evaluate for osseous contusion/ fractures, Hill-Sach's deformity, bony Bankart on Axial PD fat saturated, Coronal STIR, Coronal T1 and Sagittal oblique T2 non fat saturated sequences

11. Final Survey + Localizer:

 Using the Axial PD fat saturated, make a final survey of the surrounding soft tissues and Scapula for any additional abnormalities

Common Cases

Rotator cuff tendinosis/tear

- Mucoid <u>degeneration</u>
- Supraspinatus tendon most commonly affected
- Tendon thickening with increased signal intensity (T1 + T2)
- Grading: mild, moderate severe

- Partial vs. full thickness vs. complete tears need to be differentiated
- Gap in the tendon filled with fluid

Intact rotator cuff

Full thickness tear

Large full thickness tear

Superior labrum anterior-posterior (SLAP) tear

- Results from repetitive avulsive stress from the origin of the long head biceps tendon
- Common symptoms besides pain include clicking/popping
- Most important differential diagnosis are normal labral variants
- Best seen on MR arthrography (MRA)
- Best plane to assess for SLAP tears is coronal oblique (but use all three planes)

MRA- Normal labrum MRA- SLAP Contrast points laterally

Sublabral recess (normal variant)

Compared to SLAP tear, contrast points medially/towards the glenoid

Anterior shoulder dislocation

- 95% of shoulder dislocations
- Vey high recurrence rate in young patients (90% in <20 years old)
- Humeral head is displaced anteriorly, inferiorly, and medially
- Often associated with <u>Hill Sachs</u> and <u>Bankart</u> lesions

Large <u>osseous Bankart fracture</u> of the anteroinferior glenoid with an articular step off after a recent anterior shoulder dislocation

Large <u>Hill-Sachs lesion</u> ■ **►** of the posterolateral humeral head with reactive osseous edema

Adhesive capsulitis

- 'Frozen shoulder'
- Presents with shoulder pain and decreased range of motion due to synovial inflammation and capsular fibrosis
- Pericapsular thickening/edema within the <u>axillary recess</u>, a typical location for adhesive capsulitis

- Infiltration in the <u>rotator</u>
 <u>interval</u> and thickening of
 the coracohumeral
 ligament (CHL) are
 hallmarks of this condition
- Typical findings on <u>arthrography</u> are extravasation of contrast with relatively low glenohumeral joint volume

Calcific tendinosis

Hydroxyapatite deposition, in this case located in the supraspinatus tendon (most

- Low signal on all sequences (can blend in with the tendon in less obvious cases)
- Can demonstrate blooming artifact on gradient echo sequences (not shown)

Distal clavicular osteolysis (DCO)

Intense marrow edema in the distal clavicle with an nondisplaced <u>subchondral</u> <u>fracture</u> , an associated finding

DCO is classically described in weightlifters (repetitive microtrauma), but occurs also in the posttraumatic setting (after AC joint injury)

Os acromiale

- Unfused acromial apophysis
- 3 ossification centers of the acromion:
 - Preacromion (most distal)
 - Mesoacromion (mid)
 - Metaacromion (proximal)
- Normal apophysis can be unfused until age of 25
- On MRI evaluate for signal intensity in the acromial synchondrosis → stable vs. unstable
- Unstable os acromiale have questionable association with impingement and subsequent rotator cuff tendinopathy

